If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20^2+b^2=25^2.
We move all terms to the left:
20^2+b^2-(25^2.)=0
We add all the numbers together, and all the variables
b^2-225=0
a = 1; b = 0; c = -225;
Δ = b2-4ac
Δ = 02-4·1·(-225)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30}{2*1}=\frac{-30}{2} =-15 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30}{2*1}=\frac{30}{2} =15 $
| 4x+12=8x+8.x | | w+2/5=7/5 | | 3x+2(6x+14)=-46 | | C=5n+2 | | -44=4(2x-5)-8 | | -11y+7=40 | | 167-19x=1123 | | -f+(-33)=-98 | | 1123x-19=167 | | j+19/7=9 | | 27=d/10+22 | | 3(2x+6)=4(x–8) | | 8=n-26/9 | | -2x-28=2(4x+1) | | 5-6n=58 | | t=9 | | n/3+23=27 | | 79=7m+16 | | p(-5)=-756 | | x^2-77x+10=0 | | 18x-24=-6(3x+4) | | 167x-19=1123 | | -x-(-4)=-x-x+1 | | 25c+10c²=0 | | 1123=19x-167 | | 26=m/3 | | j/8-(-24)=25 | | Y=4x-200 | | 19x+157=1123 | | F(10)=3x-10 | | C=50n+3 | | -x-(-4)=2(-x)+1 |